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First-order perturbed Korteweg —de Vries solitons
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We consider the Korteweg—de Vries equation with a perturbation arising naturally in many physical situa-
tions. Although being asymptotically integrable, we show that the corresponding perturbed solitons do not have
the usual scattering properties. Specifically, we show that there is a solution, correc® () tavheree is the
perturbative parameter, consisting,tat —«, of two superposed deformed solitons characterized by wave
numbersk; andk, that give rise, fot— + <0, to the same but phase-shifted superposed solitons plus a coupling
term depending ok, andk,. We also find the condition on the original equation for which this coupling
vanishes[S1063-651X98)06004-§

PACS numbd(s): 03.40.Kf, 02.30.Jr

The importance of certaiintegrable partial differential  for its long-wavelength, weak, nonlinear limit, by introduc-
equationgor the description of physical systems comes froming slow space and time variables= e(x—ct), 7=¢€t,
the fact that they may describe asymptotic limits of equationsvheree<<1. This results in an equation of the form
supposed to govern real systems. The property of integrabil-
ity, although being rare in general, in the realm of asymptotic U= Po[u]+ePy[u]+e*Py[u]+- -,
equations is ubiquitoukl]. A notorious example is that of o . o
the Korteweg—de VriegkdV) equation. This equation de- WherePi[u] are polynomials mizand 'tséldeflvatlves Ef;at
scribes the long-wavelength limit of spatially extended sys-Scale homogeneously when-e~*, d,~€"*, andd,~e"*.
tems that are conservative and dispersive. The nonlinegn€ scaling order must be such thelP,, scales likeu..
Schralinger (NLS) equation also enjoys this universality This restricts th_e possible forms & y For instancePy is
character, describing the slow nonlinear modulation of wavdorced to contain only terms proportional tg,; anduu,,
amplitude in dispersive systems. The physical systems coriésulting in the KdV equatiorP, is what is called a natural
cerned form a wide range of examples, including, to quote Eﬁ)ertgrbanon._ It contains all the po_SS|bIe terms aIIow_ed by the
few [2], water waves, gas dynamics, plasma physics angcalmg and it rep_resents a generic perturbation. It is not dif-
waves in ferrites. The concept of solitons is directly associficult to see that it must be of the form
ated with equations that are integrable by the inverse scatter-
ing method 3]. Indeed, such equations displblysoliton so-
lutions and a general solution for sufficiently well-behaved @

initial conditions evolves asymptotically in time t0 & SUpPer-\yhereq, are arbitrary constants. One could ask the following
position of solitons and radiative terms. question: When is an “unnatural” perturbation allowed? In

Predictions derived from equations such as the KdV anhe context of conservative and dispersive equations the an-
NLS equations, which are obtained from perturbation theoryg,«r is that we would need a physical constant to scale with

must pass the test of being stable against higher-order pe[- The gefinition of naturalness is meant to exclude this case.

turbations. To date, a plethora of results exists concerningqice that the same hypothesis is assumed when we speak
the behavior of solutions of perturbed equations, most fregs e universality of the KdV equation, which would not

. , _ fepresent a universal limit of dispersive systems if arbitrary
scattering transform methdd]. To make our point, we first scaling of constants were allowed.

specialize the prqblem. We will pe consid(_ering perturbations Ifin EQ. (2) ag= 1= ay= as, then the resulting equation
to the KdV equation, thus equations reading obtained by inserting Eq2) into Eq. (1) is integrable and
displaysN-soliton solutions. For instance, the one-soliton so-
lution reads simply

P(U) = agUyyxs— 1001 UUyyy— 20ar,Uy Uy + 30a3u2U,

U;=6UUy,— Uyyt+ €P(U), 1)

whereu is a function of ,t), P(u) is a function ofu and its u=— 2k sech{k[x— (4k?— 16aqek*)t]}. ®)
derivatives inx, e<1 is a perturbative parameter, and sub-

scripts denote differentiation. We will not be concerned withLet us now ask the central question: Given Eq, with the

an arbitraryP(u). Rather, we will be concerned with what perturbation(2), can we still define the concept of solitons?
could be callednatural perturbation, namely, thosB(u) Explicitly, do we still have a solution that fdr— *o is the
arising in perturbative expansions from basic equations thauperposition of functiong;(x,t,k;), each of them depend-
are conservative and dispersive, with a dispersion relatiomg only on onek;, and such that they scatter elastically,
admitting an expansion of the fornw(k)=a;k+azk®  differing fromt— —o to t— +o by a phase shift only? It
+agk®+- - . We further assume that no constants scale witrshould be remarked that we are working with an equation
€. To have a better understanding of what is meanbé- coming from a perturbative expansion, truncatedOgk).

ral, consider a conservative and dispersive system and lookhus, we do not look for exact solutions, but for solutions
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correct up toO(e€). Thus we arrive at the formalism of 4 38
asymptotic integrability, as introduced [B—7]. ¢=—||at = F2F2 —(2a+6B+3y)FF2F,,
Suppose that we make asrdependent transformation F
u—w of the form B
+(a+3B8+2y)Fi+(2B8+ y)FZFXFXX—(E)FgFXXXX}

U=W-+ ep(w), (4) ©

known as a near-identity transformation. What has beems is well known, if we definen,=k[x— (k®— eagk*)t];

shown in[5,7] is that Eq.(1), with P(u) given by Eq.(2),  then, for a one-soliton solution we have
can always be transformed to
F=1+exp ) (10

W= BW Wy — Wiyt @00 €( Wiy LOW Wy — 200, Wy

+30w2w,) + O(€?), 5

and for a two-soliton solution

F=1+exp(ny,)+explny,) +expl 7, + 7, + A,

11
which is just the sum of the KdV equation and the first 1D

higher-order equation in the KdV hierarcf§], and its solu-  with expA;,=[(k;—k,)/(k;+k,)]?. Inserting expression
tions are the solutions of the KdV equation with a renormal-(10) into Eq. (9) and going through the algebra gives us the
ized velocity, just like in Eq.(3). Thus, in order to find perturbation to the one-soliton solution:

solutions of the original problem we have to insert the solu-

tions of Eq.(5) into Eq.(4). Before giving the explicit form b B+y a+3B+2y

of the near-identity transformation we should stress that it ;2= _(T) sech(7d2) + T) sectt(7/2)
not possible, in general, to extend this procedure to arbi-

trarily higher orders. This comes from the existence of ob- Y

stacles to asymptotic integrability as discussefbijfor the - (§> seck( m/2)tant 7,/2). (12

NLS equation, but equally applicable to the KdV equation.
Furthermore, it is possible to find a transformation that mapsrhe first term represents a perturbation to the amplitude of

our original equatior(1) to the KdV equation itself but that  the solitary wave. The second and third terms represent de-
is x dependen(7]. However, this is not of practical use here. formations of the soliton form. However, in this case the

The correct form ofp(w) turns out to be term sech(7/2)tanh@z/2) can always be eliminated. In-
deed, in Eq(4) a termAw, can always be added, being an
H(W) = aW?+ BWyy+ yW,d~ tw, (6) arbitrary constant that can be adjusted to eliminate the third

term in Eq.(12). This is related to the fact that, if we had
tried to solve Eq(1) by a perturbative series, &(e) we
could always sum a solution of the linearized KdV equation.
Without this third term, we have the result[@&]. Let us now

go to the two-soliton case, but let us take into account the

where 9! denotes integration with respect xoand «, 83,
andy are given in terms of; by

1 existence of an additional terfw, from the beginning. In-
a=3(10ao+5a;~ 15a3), (78 stead of writing out the solution explicitly, we give the
asymptotic behavior fot— =, taking the limits by using
1 standard techniqueg3]. We obtain the following results.
8= 6(15“3_ 10a,—5ay), (70)  First, define
+
P, K) = k“[ - ( M) secti(7,/2)
10 , 2
7_?(a0_a1)' (79 a+3B+2y

4

) sech( nk/Z)} . (13

We can now look for th& coming from the one-soliton and . e
two-soliton solutions, for example. This is instructive for the With this definition, we have, for— +c,
one-soliton case, but the expression for the two-soliton case

. 2956, D . ARy ki
is not very illuminating. For this reason, we should look at - ko) + A ko) | L
the asymptotics fort— *=c. This is most easily accom- = e ko) F gt Aaz ko) 2 27
plished by using well-known techniques of soliton theory.
First, transform fromw to F by x sechi( i /2)tant(n,/2)
YAKS k3

w=—2(In F)y, 8) +| 5 vkikG+ y o | sech (i, +A)/2]

thus obtaining a transformegl(F): xtanf (7, +A)/2], (14)
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and fort— —oo,

b= (i, + Arz K+ (ko) +| — R4

Ay Kb )

Al ki
x sech( my /2)tank( 7, /2) + l 5 = — ok + 771)

X sech[ (7 +Arp)/2]tant (7 +A1p)/2]. (15)
If we now impose that fot— —c we have a sum of func-
tions, each one depending only on eitlkgror k,, we must
chooseA=2k,. However, with this choice, fot— +o we
will get a coupling term involvink; andk,. Indeed, we can
see that there is no constahtsuch that for both— * o~ we

4777

however, that ify=0, then this linkage disappears and the
usual picture of elastic scattering of solitons, although de-
formed, shows up.

Let us now summarize our results. We have a perturbed
KdV equation, where the perturbation is, generically, nonin-
tegrable. Instead of looking for an exact solution, we search
for an expression valid up 1©(¢), as the original equation is
supposed to be valid only to this same order. In this sense,
we have found the general effects of the perturbation given
by Eg. (2), which are summarized in Eq$14) and (15).
Qualitatively we can say the following: In the general case,
the solitons are asymptotically deformed and do not preserve
the usual particlelike properties because of the appearance of
a linking term involvingk,; andk,. However, an interesting

can have a superposition of functions, none of which decase emerges whe®,= @, in Eq. (2), in which there are
pends on the mixedk( ,k,) terms. We see thus that we do particlelike structures, deformed solitons, that have asymp-
not have a process of scattering of two solitons that are urtotically, up toO(e), the same collisional properties as soli-
correlated asymptotically in time. Even for a solution con-tons in integrable systems.

sisting of the superposition of two one solitongat —«, a
linkage appears fdr— +« through a k;,k,) coupling. This

means that we cannot define two separate particlelike objec
that scatter and emerge maintaining their identity. Note
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