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First-order perturbed Korteweg –de Vries solitons
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Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil

~Received 11 April 1997; revised manuscript received 3 December 1997!

We consider the Korteweg–de Vries equation with a perturbation arising naturally in many physical situa-
tions. Although being asymptotically integrable, we show that the corresponding perturbed solitons do not have
the usual scattering properties. Specifically, we show that there is a solution, correct up toO(e), wheree is the
perturbative parameter, consisting, att→2`, of two superposed deformed solitons characterized by wave
numbersk1 andk2 that give rise, fort→1`, to the same but phase-shifted superposed solitons plus a coupling
term depending onk1 and k2. We also find the condition on the original equation for which this coupling
vanishes.@S1063-651X~98!06004-8#

PACS number~s!: 03.40.Kf, 02.30.Jr
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The importance of certainintegrable partial differential
equationsfor the description of physical systems comes fro
the fact that they may describe asymptotic limits of equati
supposed to govern real systems. The property of integra
ity, although being rare in general, in the realm of asympto
equations is ubiquitous@1#. A notorious example is that o
the Korteweg–de Vries~KdV! equation. This equation de
scribes the long-wavelength limit of spatially extended s
tems that are conservative and dispersive. The nonlin
Schrödinger ~NLS! equation also enjoys this universali
character, describing the slow nonlinear modulation of wa
amplitude in dispersive systems. The physical systems c
cerned form a wide range of examples, including, to quot
few @2#, water waves, gas dynamics, plasma physics
waves in ferrites. The concept of solitons is directly asso
ated with equations that are integrable by the inverse sca
ing method@3#. Indeed, such equations displayN-soliton so-
lutions and a general solution for sufficiently well-behav
initial conditions evolves asymptotically in time to a supe
position of solitons and radiative terms.

Predictions derived from equations such as the KdV a
NLS equations, which are obtained from perturbation theo
must pass the test of being stable against higher-order
turbations. To date, a plethora of results exists concern
the behavior of solutions of perturbed equations, most
quently obtained through the use of the perturbed inve
scattering transform method@4#. To make our point, we firs
specialize the problem. We will be considering perturbatio
to the KdV equation, thus equations reading

ut56uux2uxxx1eP~u!, ~1!

whereu is a function of (x,t), P(u) is a function ofu and its
derivatives inx, e!1 is a perturbative parameter, and su
scripts denote differentiation. We will not be concerned w
an arbitraryP(u). Rather, we will be concerned with wha
could be callednatural perturbation, namely, thoseP(u)
arising in perturbative expansions from basic equations
are conservative and dispersive, with a dispersion rela
admitting an expansion of the formv(k)5a1k1a3k3

1a5k51¯ . We further assume that no constants scale w
e. To have a better understanding of what is meant bynatu-
ral, consider a conservative and dispersive system and
571063-651X/98/57~4!/4775~3!/$15.00
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for its long-wavelength, weak, nonlinear limit, by introdu
ing slow space and time variablesj5e(x2ct), t5e3t,
wheree!1. This results in an equation of the form

ut5P0@u#1eP1@u#1e2P2@u#1¯ ,

wherePi@u# are polynomials inu and itsj derivatives that
scale homogeneously whenu;e22, ]j;e21, and]t;e23.
The scaling order must be such thatenPn scales likeut .
This restricts the possible forms ofPi . For instance,P0 is
forced to contain only terms proportional toujjj and uuj ,
resulting in the KdV equation.P1 is what is called a natura
perturbation. It contains all the possible terms allowed by
scaling and it represents a generic perturbation. It is not
ficult to see that it must be of the form

P~u!5a0uxxxxx210a1uuxxx220a2uxuxx130a3u2ux ,
~2!

wherea i are arbitrary constants. One could ask the followi
question: When is an ‘‘unnatural’’ perturbation allowed?
the context of conservative and dispersive equations the
swer is that we would need a physical constant to scale w
e. The definition of naturalness is meant to exclude this ca
Notice that the same hypothesis is assumed when we s
of the universality of the KdV equation, which would no
represent a universal limit of dispersive systems if arbitr
scaling of constants were allowed.

If in Eq. ~2! a05a15a25a3, then the resulting equation
obtained by inserting Eq.~2! into Eq. ~1! is integrable and
displaysN-soliton solutions. For instance, the one-soliton s
lution reads simply

u522k sech2$k@x2~4k2216a0ek4!t#%. ~3!

Let us now ask the central question: Given Eq.~1!, with the
perturbation~2!, can we still define the concept of solitons
Explicitly, do we still have a solution that fort→6` is the
superposition of functionsf i(x,t,ki), each of them depend
ing only on oneki , and such that they scatter elastical
differing from t→2` to t→1` by a phase shift only? It
should be remarked that we are working with an equat
coming from a perturbative expansion, truncated atO(e).
Thus, we do not look for exact solutions, but for solutio
4775 © 1998 The American Physical Society
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4776 57R. A. KRAENKEL
correct up toO(e). Thus we arrive at the formalism o
asymptotic integrability, as introduced in@5–7#.

Suppose that we make ane-dependent transformatio
u→w of the form

u5w1ef~w!, ~4!

known as a near-identity transformation. What has b
shown in@5,7# is that Eq.~1!, with P(u) given by Eq.~2!,
can always be transformed to

wt56wwx2wxxx1a0e~wxxxxx210wwxxx220wxwxx

130w2wx!1O~e2!, ~5!

which is just the sum of the KdV equation and the fi
higher-order equation in the KdV hierarchy@3#, and its solu-
tions are the solutions of the KdV equation with a renorm
ized velocity, just like in Eq.~3!. Thus, in order to find
solutions of the original problem we have to insert the so
tions of Eq.~5! into Eq. ~4!. Before giving the explicit form
of the near-identity transformation we should stress tha
not possible, in general, to extend this procedure to a
trarily higher orders. This comes from the existence of o
stacles to asymptotic integrability as discussed in@6# for the
NLS equation, but equally applicable to the KdV equatio
Furthermore, it is possible to find a transformation that m
our original equation~1! to the KdV equation itself but tha
is x dependent@7#. However, this is not of practical use her

The correct form off(w) turns out to be

f~w!5aw21bwxx1gwx]
21w, ~6!

where]21 denotes integration with respect tox and a, b,
andg are given in terms ofa i by

a5
1

3
~10a015a1215a3!, ~7a!

b5
1

6
~15a3210a225a0!, ~7b!

g5
10

3
~a02a1!. ~7c!

We can now look for theu coming from the one-soliton an
two-soliton solutions, for example. This is instructive for t
one-soliton case, but the expression for the two-soliton c
is not very illuminating. For this reason, we should look
the asymptotics fort→6`. This is most easily accom
plished by using well-known techniques of soliton theo
First, transform fromw to F by

w522~ ln F !xx , ~8!

thus obtaining a transformedf(F):
n
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f5
4

F4 F S a1
3b

2 DF2Fxx
2 2~2a16b13g!FFx

2Fxx

1~a13b12g!Fx
41~2b1g!F2FxFxx2S b

2 DF3FxxxxG .
~9!

As is well known, if we definehk5k@x2(k22ea0k4)t#;
then, for a one-soliton solution we have

F511exp~hk! ~10!

and for a two-soliton solution

F511exp~hk1
!1exp~hk2

!1exp~hk1
1hk2

1A12!,
~11!

with expA125@(k12k2)/(k11k2)#2. Inserting expression
~10! into Eq. ~9! and going through the algebra gives us t
perturbation to the one-soliton solution:

f

k4
52S b1g

2 D sech2~hk/2!1S a13b12g

4 D sech4~hk/2!

2S g

2D sech2~hk/2!tanh~hk/2!. ~12!

The first term represents a perturbation to the amplitude
the solitary wave. The second and third terms represent
formations of the soliton form. However, in this case t
term sech2(hk/2)tanh(hk/2) can always be eliminated. In
deed, in Eq.~4! a termAwx can always be added,A being an
arbitrary constant that can be adjusted to eliminate the t
term in Eq.~12!. This is related to the fact that, if we ha
tried to solve Eq.~1! by a perturbative series, atO(e) we
could always sum a solution of the linearized KdV equatio
Without this third term, we have the result of@8#. Let us now
go to the two-soliton case, but let us take into account
existence of an additional termAwx from the beginning. In-
stead of writing out the solution explicitly, we give th
asymptotic behavior fort→6`, taking the limits by using
standard techniques@3#. We obtain the following results
First, define

c~hk ,k!5k4F2S b1g

2 D sech2~hk/2!

1S a13b12g

4 D sech4~hk/2!G . ~13!

With this definition, we have, fort→1`,

f5c~hk1
,k1!1c~hk2

1A12,k2!1S Ak1
3g

2
2

k1
4

2
g D

3sech2~hk1
/2!tanh~hk1

/2!

1S gAk2
3

2
2gk1k2

31g
k2

4

2 D sech2@~hk2
1A12!/2#

3tanh@~hk2
1A12!/2#, ~14!
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57 4777FIRST-ORDER PERTURBED KORTEWEG–de VRIES SOLITONS
and for t→2`,

f5c~hk1
1A12,k1!1c~hk2

,k2!1S Ak2
3g

2
2

k2
4

2
g D

3sech2~hk2
/2!tanh~hk2

/2!1S gAk1
3

2
2gk2k1

31g
k1

4

2 D
3sech2@~hk1

1A12!/2#tanh@~hk1
1A12!/2#. ~15!

If we now impose that fort→2` we have a sum of func
tions, each one depending only on eitherk1 or k2, we must
chooseA52k2. However, with this choice, fort→1` we
will get a coupling term involvingk1 andk2. Indeed, we can
see that there is no constantA such that for botht→6` we
can have a superposition of functions, none of which
pends on the mixed (k1 ,k2) terms. We see thus that we d
not have a process of scattering of two solitons that are
correlated asymptotically in time. Even for a solution co
sisting of the superposition of two one solitons att→2`, a
linkage appears fort→1` through a (k1 ,k2) coupling. This
means that we cannot define two separate particlelike ob
that scatter and emerge maintaining their identity. No
-

n-
-

ts
,

however, that ifg50, then this linkage disappears and t
usual picture of elastic scattering of solitons, although
formed, shows up.

Let us now summarize our results. We have a pertur
KdV equation, where the perturbation is, generically, non
tegrable. Instead of looking for an exact solution, we sea
for an expression valid up toO(e), as the original equation is
supposed to be valid only to this same order. In this sen
we have found the general effects of the perturbation gi
by Eq. ~2!, which are summarized in Eqs.~14! and ~15!.
Qualitatively we can say the following: In the general ca
the solitons are asymptotically deformed and do not prese
the usual particlelike properties because of the appearanc
a linking term involvingk1 andk2. However, an interesting
case emerges whena05a1 in Eq. ~2!, in which there are
particlelike structures, deformed solitons, that have asym
totically, up toO(e), the same collisional properties as so
tons in integrable systems.
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